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ABSTRACT 

This paper describes in terms of differential forms the real homology of a certain 
class of spaces, which we call networks. Networks include, besides smooth 
manifolds, singular sets of toral actions, classifying spaces of Lie groups, etc. A 
generalized Thom isomorphism theorem is also proved in this context. 

Introduction 

The purpose of this paper is to describe in terms of differential forms the real 

homology of a certain class of spaces, which we call networks, and to prove a 

generalized Thom isomorphism theorem in this context. 

Networks are spaces which can be decomposed as unions of smooth manifolds 

satisfying some specific conditions. The precise definition is given in §1. 

The main example of a network is provided by the "singular set" of a torai 

action. In fact this is the example that has motivated our definition. We describe 

it next. 

Let G be a torus, or more generally an abelian compact Lie group, acting 

smoothly on a smooth manifold M. Then the set A of points in M left fixed by 

some nontrivial subtorus of G, as well as the set A '  of points in M left fixed by 

some nontrivial subgroup of G, are networks if we further assume that the action 

of G on M has finite orbit type (see theorem 14 of [4]). 

If a network A were a compact oriented m-manifold we could use the exterior 

derivative in the differential forms on A and write A~(A)=Am-P(A) ;  this 

would give the homology of A (by Poincar6 duality). In general A is not a 

smooth manifold, thus we need to work a little harder and construct a chain 

complex out of differential forms giving the real homology of A. This construc- 

tion is carried out in §2. 
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In §3 we establish an isomorphism between the de Rham cohomoiogy with 

compact supports of some tubular neighbourhood of a network A, embedded in 

a manifold M, and the real homology of A. This isomorphism reduces to the 

Thorn isomorphism when A is a smooth manifold. 

We prove in §4 that the homology constructed in §2 is, in fact, isomorphic to 

the real singular homology of A. 

Finally in §5 we compare networks with other constructions such as Mostow's 

differentiable space structure, see [6], and study more closely the particular case 

of a smooth toral action. 

Next I wish to describe the kind of applications I have in mind in writing this 

paper. Suppose we can define some sort of structure on a compact oriented 

smooth manifold M, but only outside some "singular set" A, which happens to 

be a network. Further assume that for any given open neighbourhood U of A it 

is possible to obtain differential forms representing some characteristic classes ct 

of a vector bundle ~: over M and these differential forms having compact support 

contained in U. In this situation we produce a real homology class of A,/3, by 

using the generalized Thorn isomorphism theorem (13). Thus we have a formula 

j , / 3  = Da,  where j : A ~ M is the inclusion and D is Poincar6 duality. In many 

cases we can think of/3 as a kind of "residue" at A which is obtained in terms of 

local data. The above formula would be thus a residue formula relating global 

and local information. 

In a forthcoming paper I will show one of these residue formulae for the 

particular case of a 2-dimensional torus acting smoothly on a vector bundle. 

Nevertheless I believe Theorem 13 of this paper could possibly be used in similar 

situations. 

Notation 

We use the word manifold to mean a disjoint union of connected Hausdorff 

C~-manifolds with a countable base of open sets. 

We do not assume that the connected components of a manifold have all the 

same dimension. 

By a submanifold N of a manifold M we mean a manifold N topologically 

embedded in M such that each connected component of N is a smooth 

submanifold of some connected component of M. 

If B = U ~ B ~  is a manifold with connected components {B~},~, we set 

A e (B) = I I ~  A p (B~), where A p (B~) are the spaces of exterior p-forms on B~. 

A ~(B) = @ , ~ t A  ~(B,), where A ~(B,) are the spaces of exterior p-forms on B, 
having compact support. 



112 F. G O M E Z  Isr. J. Math. 

A p ( B )  = IIi~iA ' -e(B,) ,  where ni = dimension of B~, with the convention that 

A n,-p (Bi) = 0 whenever ni - p is negative. 

A ~ ( B )  = ~ I A " ' - P ( B ~ ) ,  with the same convention as before. 

Similarly a fibre bundle over a manifold B is understood as a family of smooth 

fibre bundles, one over each B~. 
If ~ is an oriented fibre bundle over a manifold B and we denote by E its total 

space, we have the fibre integral f : A ~ ( E ) - - * A ~ ( B )  as defined in chapter 7 of 

[51. 

§1. Networks 

(1) Let I be an ordered set such that each pair i, j in I with a lower bound has 

an infimum (greatest lower bound), denoted inf(i,j). We call such I 's  almost 

directed sets. 

Regard I as a category in the obvious way and define a network as a covariant 

functor from I to the category of manifolds and smooth maps, such that if we 

denote by F~ the manifold associated to i E I and by ~q : E ~ Fj the smooth 
map associated to i _-< j, the following conditions are verified (see [4]): 

(a) (E, tpq)is a closed submanifold of F/ ( i , j  E I,i<=j). 

(b) ~i , (~)  n ~pk,(Fk) = ~p,~(F~), i,j, k, r @ I with j _-< r, k _-< r and i = inf(j, k). 
(c) T~ (~p,,(F~))= T~(~#(F/)) n T~(~k,(F~)) for all x E ¢#,,(E) and i, j, k, r as in 

(b). 
(d) For all r E I  and x EU~,~o~,(E) ,  the family of subspaces of 

T~ (E){ T~ (~o~, (E))}~., verifies 

T~ (~,,(F~)) O ~ T~ (q~,,(Fj))= ~ T~(~o,,(F~)) O T~ (q~,,(Fj)) 
j~.s jEs 

for i E I~,, J C I_~, (where I~r = {i ~ I ] i <= r}). 

(2) If ,~=({E},~,~P,i), ~'=({F;},~r,~p;/) are networks, a smooth map 

f : $;--~ ,~' consists of a nondecreasing map a : I ~ I'  together with a family of 

smooth maps f~ : E  ~ F~o such that the diagrams 

E 6 ~ F'~n 

F, 

commute for all i =< j in /. 

Ij 
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(3) Observe that if ~ is a network we can define the following topological 

space I ~ l  : consider the disjoint union of the F~ (i E I)  and identify x E F~ with 

y ~ F~ if there exists k E I such that k <_- i, k _-<j and ~ok~(z) = x, ,#~j(z) = y for 

some x E Fk. 

We define a topology on I ~ l  as the finest topology for which all natural 

inclusions q~, : F~ ~ I ~ I are continuous. Thus, a map f :1 ~ { -~ X (X being any 

topological space) is continuous if and only if f o ~i : F~ --~ X is continuous for all 

iEI .  
Clearly a smooth map, f :  ~--~ ~ ' ,  of networks induces a continuous map 

I f l : l~ l - - , I  ~'1. 
Observe that the topology induced from I~1 to ~ , (E)  coincides with the 

topology induced from E via ~,. Therefore we may assume that all maps ¢~j, q~ 

are inclusions and often we do not write them. 

(4) Examples of Networks 
(a) Manifolds. A manifold can be regarded as a network over the almost 

directed set consisting of a single element. 

(b) Wedge of manifolds. A wedge of manifolds V~,Mi  is a network over 

I U { * } (* is the common point of the Mi) with * < i for all i E I and no other 
pair of distinct elements being related. 

(c) Fixed point sets of total actions (see [4]). This is the main example that has 

motivated the theory. 

Let G be a torus (or more generally a compact abelian Lie group) acting 

smoothly on a compact manifold M, then the sets F={x E MIGx~  e} and 

F ° = {x E M [ G ° ~  e} can be expressed as the union of submanifolds of M. Here 

e denotes the unit element of G, G~ denotes the isotropy subgroup at x of the 

action of G on M and G O denotes the 1-component of G~. 

(d) Classifying spaces of Lie groups. In fact these spaces can be described as 

the union of a sequence of manifolds - . .  M~ C M~+~-.- with M~ a closed 
submanifold of M~+I. 

(e) Network associated to a simplicial complex. Let K be a simplicial complex 

and denote by Ir the set of all simplices of K ordered by inclusion. IK is an 

almost directed set. To each tr E IK we associate the linear manifold F# of all 

functions a :K---~R such that a ( v ) = 0  if v ~ t r  and E v ~ a ( v ) =  1. Therefore 

---{F~},~ K is a network associated to K. The polyhedron [K[  is a closed 

subspace of l .~ 1. Furthermore, [K[ is a strong deformation retract of l f f  [. 

(f) Linear network. Let ~ = {F~}~ be a family of distinct finite dimensional 

subspaces of a real vector space F of arbitrary dimension and assume that the 
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following two conditions hold: 

(i) The intersection of any two members of ~ belongs to ~. 

(ii) F~ A(E~sFj)=Ej~sF~ AFj for all i E I  and JCI .  

Then ~ is clearly a network. 
(g) Standard network. Let ~ ' E  ~ ) B  be a real vector bundle and let 

~:~ • E, '~' > B (i = 1 . . . . .  r) be subbundles of ~ such that ~ = ~ G " "  G ~:,. 

If I C{1,. r} we denote ~)~sr~ by ~' : El , B and set = 0 - -  vector 

bundle over B, so that we identify E~ with B. 

The family {E~}~ ...... r is a network in E as can be checked easily. We call it the 

standard network associated to ( ~ ; ~  . . . . .  ~,). 

(5) Orientation of a Network 
We say that a network o~ = {F~}~ is orientable if each of the manifolds E is. 

An orientation of ~ is then a particular choice of orientations, one for each F,. 

Of course we assume that in case F~ and Fj have a common connected 

component, both orientations agree on it. 

We have for the above examples (4): 

(a) Of course a manifold is oriented as a network if it is oriented as a 

manifold. 

(b) V~IM~ is oriented if each M~ is. 

(c) F and F ° can be expressed as the union of the members of oriented 

networks if M is oriented. 

(d) The classifying space of a compact connected Lie group is oriented. 

(e) and (f) The network associated to a simplicial complex as well as any linear 

network is always oriented. 

(g) The standard network is oriented if B is oriented and each ~:~ is also 

oriented. 
If a network ~ has been oriented with an orientation ¢7, we will denote ~ the 

network ~ with the given orientation• 

(6) Tubular Neighbourhoods 
Let ,~ = {F~}~ be a network. We define an internal tubular neighbourhood of 

to be a family of tubular neighbourhoods O~s : U0 -~ E of F~ in ~ (i -< j )  

verifying the following conditions: 

(i) If i - < r , j < s  a n d F ,  n F j = O t h e n  U, ,NUj~--O.  

(ii) If i < j  < k then p~1(U~) = U~ and p~j opjk Iv, k = p~k. 

(iii) I f j  < r, k < r, F,. N Fk = F- then we have U~ = Fi N Uk, and p~j = p~, lu,,. 
(iv) I f j  <r ,  k=<r a n d F j n F k = E  then u # n U k r = U ~ ,  
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(v) If j =< r, k 5 r and F j n  F~ = F~ then Ui, (3/J~, = U~, where all closures are 

taken in E. 

REMARK. If F is a submanifold of M, an internal tubular neighbourhood of F 
id 

is simply F > F, and an internal tubular neighbourhood of the network 

{F,M} consists of the three tubular neighbourhoods F ~ , E  U ,F,  
id p 

M > M. Of course, we normally say simply that U ) F is an internal 
tubular neighbourhood of {F, M}. 

(7) The examples (4)a, b, d and f admit clearly an internal tubular neighbour- 

hood. The example (g) admits the internal tubular neighbourhood zr~ : Ej ~ Er 
given by Ir~(~ ,~jz , )=~,z~  ( ICJ) .  The examples c and e admit also an 

internal tubular neighbourhood if the index set is finite. In fact one can prove, by 

standard differential geometric arguments, the existence of internal tubular 

neighbourhoods for any finite network. We wish to emphasize that conditions (c) 

and (d) of the definition of a network are needed here to prove the existence of 

such an internal tubular neighbourhood. 

§2. De Rham homology of an oriented network 

Let o% = {F~}~ be an oriented network admitting an internal tubular neigh- 

bourhood J- = {(U~ i, P,J)}~-<i- 
If F, C Fi we have on U0 the orientation induced from Fj, and we endow then 

the vector bundle p,j:U~j~ F, with the unique orientation such that the 

orientation on U~i coincides with the local product orientation of the one of F~ 

and the one of the vector bundle (see [5]). We say that 3- has been oriented with 

the induced orientation. 

(8) Let • be an orientation of a network o% = {F~},~ and let us denote the 

oriented network by ore. 
Consider the real vector space G ~ A p ( F ~ )  and define c oz c Jp(~,, ~-) as the 

subspace spanned by the elements of the form 

~P/,- ~, CAp(Fj)OAp(F,), i<=], 

where ~j has compact support on U~j. 

Set A f,(o%~, J-) = G,~,A~(F,)/J~p(~, if). 
J~,(,~o, i f ) =  ~]~p_>-0J~,(~e, J-) is stable under the exterior derivative d and 

hence we have an induced map d : A~,(,~e, ~ - ) ~  A~,_,(~, 5r). 

We denote by H .  (o%~,., J-) the homology of the chain complex (A .  ( ~ ,  ~-), aT). 
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H~(ff~, .~) is called the de Rham homology of the oriented network ,~. We 
will see in §4 that this homology is canonically isomorphic to the singular 
homology of [ ~1 with real coefficients. In particular it will be shown that it is 
independent of the particular choice of 8- and ~?. 

(9) Similarly if we consider {~,~,Ap(F~) and define Jp ( ~ ,  8-) as the span of 

( O i , - ~ j  qb,) E Ap(F~)~ Ap(F~), i<j ,  

with Oj having fibre compact support on U 0 (see [5]), we obtain another chain 
complex (A , ( ~ ,  8.), d) and hence a homology H,(ffo, 8.). Of course 
H,(~e ,  8-) coincides with H~,(o~e, 8-) if all F~ are compact with the possible 
exception of the F~ where i is a maximal element of L 

(10) Remark 
Suppose that ~7 and ~' are two orientations on ~. Define then an isomorphism 

~]~ A~(E)-~ ~]~ A ~(F~) 
i ~ l  i E l  

sending ~ EA~,(E) to @, or - ~  depending on whether the orientations 

coincide or not on E. 
Clearly the above isomorphism sends J~,(~, 8-) to J~,(~o.,8.) and hence 

induces an isomorphism from H~,(,~o, 8-) onto H~(g~e., 8-). 
Similarly we obtain an isomorphism from Hp(,~o, ~r) onto Hp(,,~,, 8-). 
We will normally drop the reference to the orientation on ff because of this 

remark. 

§3. Generalized Thom isomorphism theorem 

Let ~ = {F~},~, be an oriented network and assume that I is finite and has a 
maximum 0o E I (this is not a real restriction since any finite network can be 
embedded in some convenient RN). Denote F~ by M. Let ~ '  be the network 
obtained by deleting M from ~. Assume that ff is an internal tubular 
neighbourhood of ~ and denote by 8-' the corresponding internal tubular 
neighbourhood of ~ ' ,  the restriction of 8-. Set ,~"= ~ U {U}, where U = 
U,~,U~ (U~=U~®) and 8."=(8.-{M})U{U}=8. 'U{U,} ,~ ,U{U} (it is an 

internal tubular neighbourhood of ~"). 
Define 

c c t p p :Ap(U)--->Ap(~; ,8-) 

as follows: 
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If ~ E A ~,(U), choose ~, ~ A ~,(U~) for all i ~ I such that • = X,~, ~, (this can 

be done easily by using a smooth partition of unity subordinate to the open 
covering {U~},~ of U). 

Define then 

where [ ] denotes the corresponding class and f~ is the fibre integral for the 
bundle O~ : U~ ~ E. 

Since 0 commutes with d we obtain an induced linear map 

(11) p~ : Hg(U)-~ Hg(~', ~r,) 

where we recall that H~(U) means the (n -p ) - r ea l  space of the de Rham 

cohomology with compact support of U. 

It remains to be checked that the definition of p is correct, i.e., independent of 

the choice of ~ .  To see this let us consider the following linear map: 

given by 

Then we have 

r c O~U h : 

= 0 ] .  

Therefore p is well defined as a consequence of the following lemma: 

(12) LEMMA. The above linear map h : A ~(~', ~-') ~ A ~(o ~' ,  ~") is injective. 

PROOF. We do it in two steps labelled (a) and (b). 

(a) a ~ kernel of h, if and only if there exist f~ E A ~(U~) for all i E I such that 
X~f l ,  =0  and (f , f~)~1 represents a. 

In fact, suppose we have fl~ E A~(U~) for all i E I and such that X~it~j = 0 
and let a be the class in A~(~',~- ')  represented by ( f ~ ) ~ , .  Thus 

(( f~t~)~,, - 2~ , f l j )  E J~,(.~", if") represents h(a)  and so h(a)  = O. 

Conversely, assume that a ~ ker h. Choose (*~)~ to represent a and hence 
((¢~)~,, 0)E J~,(~:", if"). Therefore we can write in (~)~ ,A ~,(E)E)A~(U) 
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with ¢ E J~(o ~ ' ,  J- ')  and (1, E A~(U~) for all i E I. 

Define then (*'~),e, represent ing a by 

(¢P:),E, = (¢P,),e, - ¢P E ~]~ A ~(F~). 
i E l  

Then .  in @~c,A~(F~)GA~.(U), we have 

((, :) ,c, ,  0) = fl , ,  - n ,  E Jp( , ). 

t _ _  There fo re  ¢ ~ -  f~l), for  all i E I and X ~ f l ~  = 0. 

(b) We prove now the injectivity of h by induction on the number  of e lements  

of L 

If I has only one  e lement  it is an immedia te  consequence  of the character iza-  

t ion of the kernel  of h given in (a). 

Suppose  the lemma holds for  I with less than r e lements  (r _--- 2) and that  I has 

r e lements  F1 . . . . .  F,. Assume that F, is maximal in ~ ' .  Let  a E ker  h and let 

( f ,  O,),E, be a representa t ive  of a with X,e~l), = 0 and fl, E A ~(U~) for all i ~ I. 

Set V = U - s u p p o r t l 2 , .  Then  {V,{U, N U~}~=~ ....... i} is an open  cover  of U. 

Let  p~ . . . . . .  p,_,, p, be a smooth  part i t ion of unity subordinate  to the open  

covering {{U, n U~},=I ....... l, V}. 

Since p, fl,  = 0 we have 

r - - I  

fl,  = ~ pifl.- 
i ~ l  

Assume that  FI . . . . .  F~ (for some A with 1 < A _<- r - 1) are all the manifolds in 

the family {F~ . . . .  , F,-1} with nonempty  intersection with E (the case A = 0 is 

considered later in the remark).  The re fo re  U, n U~ = 0 ,  i = A + 1 . . . .  , r -  1 

because of (6)i, and so pill ,  = 0 (i = A + 1 . . . . .  r -  1). 

Thus  l - l , -  - -  E l =  I pi~'~r yields fA~, -- X~=~ f,p,l ' l , .  

Define now 

fl~ = fl~ + p~fl., i = 1  . . . . .  A, 

IT, = f t .  i = h + l  . . . . .  r - l ,  

and we have 
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S',a',=S,n,+ p, a,= a,+a, -p,n,= n,=o. 
i = 1  i=1  i = 1  i = 1  i = 1  i = 1  i = 1  

Next we want to show that ( f ,  fll . . . . .  f,_~ fl', .,0,) represents a, because this 

fact together with step (a) and induction hypothesis yields a --0. 

We have U~ n U, = U~°~,.,~ (i = 1  . . . . .  A) in view of (6)iv. We also have 

p, fl, E A ~(U~,f(~,,~). 
Observe that ~,p~O, EAp(U~,E(~.,),). In fact we clearly have s u p p f , p ~ , C  

p,.(Ui,~f(i.,.)), because supppi~'~,CUinfO.r)r. But, by (6)ii, U~.f(~,,)=pT~(U~.fo.,),). 
Therefore supp f , p , l ) ,  C U~.f~.o,. 

Consider the equality 

But 

and 

Therefore 

nf(i,r)r 

pi~, = ~. ~ pi~, E A~(Fi,fo.,)). 
f(i,r)i 

Y I ~ '  ~-') (i = 1, A). with qb E _p~ . . . . . .  

Thus we can write 

= ~'. -Q, + o, a ,  + • = P.', + ,~ 
i = 1  i = l  i = 1  

with qb E J~(~ ' ,  3").  Hence  ( f l  fl~ . . . .  , f,-1 IT,_1, 0,) represents a. 

REMARK. If F~ n E = O (i = 1 . . . . .  r -  1), then U~ n U, = O by (6)i and so 

~ ,  = 0. Thus we also have that (J:~ I E , . . . ,  f,_~ I~L,, 0,) is a representat ive of a as 

before, just taking 1~ = 1~ (i = 1 . . . . .  r - 1). 

(13) THEOREM (Generalized Thorn Isomorphism Theorem).  Let ~ '  = {F~}~E~ 
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be a finite oriented network with internal tubular neighbourhood ~ '  embedded in a 
smooth manifold M. There exists then an isomorphism between the de Rham 
cohomology with compact supports of some open neighbourhood of [ ~'1 in M and 
the de Rham homology of ~ '  as defined in §2. More precisely the above map 
p~, : H~(U)---~ H~(~', ~"), see (11), is a linear isomorphism. 

PRooF. We induct on the number of elements of/. If I has only one element 
F, then p# coincides with the isomorphism ~':H~(U)---~H~(F) which is the 
inverse of Thom isomorphism (see chapter 7 of [5]). 

Suppose now that the theorem holds for I with less than r elements (r _>- 2) and 
assume that I has r elements. Choose r maximal in I and consider the four 
networks ,~ '= {F~},~,, {E},~,-t,~, {E},~,, {E}i<,. 

We have the commutative diagram 

0---~ A :  ( U U~)~ A :  ( ~ U  u~) G A• ( U u~)--~ A .  ( ~t U~)---~0 

~ ~ ~ A ,  (~')---~ 0 O-->A,({F~},<,) ~, ,A,({E},~,-~,~)(])A,({F~},~,) ~ 

where we have omitted any reference to the internal tubular neighbourhood 
which is clear in each case. 

The top sequence of (14) is the usual short exact sequence giving rise to the 
Mayer-Vietoris sequence in de Rham cohomology with compact support. The 
maps ~0t, q~2 are induced by 

given by 

¢, :~<~ A ~(F~)--~ ~-~, A~(F~)~ ~ ,  A ~(E), 

~p2 : ~(F~) ~ A p(F~ ) A p(F~ ), 
i " i E I  

where ~ = ~ if i < r and ~ = 0 otherwise; 

where fL = ~ - ~  if i<r ,  fL =~b~ if i E I  but i ~ r  and II, = - ~ , .  
To show that the bottom sequence of (14) is exact, everything is clear except 
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that q3~ is injective, which is a consequence of Lemma (12) and that ker q52 C 

Im ~ .  
To check this last point let us assume that ~o2(~, ~t) = f~ ~ j~,(~,). Then, r being 

maximal, we have 11 = ~b+ ~ with qb E J~,({E},~,-~,~) and ~ J~,({E},_~,). 
Set ~ ' =  ~ - ~ ,  ~ ' =  ~ - ~ .  Thus ~'  and qb represent the same class a in 

A ~,({F~},~_~,~), while ~ '  and ~t represent the same class/3 in A ~,({F~},~,). But we 
have now ~0z(qb', ~ ')  = 0. In particular, if we denote the components of ~ '  by ~ ,  
i ~ I - {r}, and the components of ~ '  by xlt], i = r, we have d~'~ = ~] for all i < r, 
qb~ = 0 for all i C I -  I~, and ~', = 0. Hence if y is the class represented by 

(~),<, ~ A~{E}~<,) we have ~5~(y) = (a,/3). 
Finally, the corresponding commutative diagram in cohomology, obtained 

from (14), together with induction hypothesis and the 5-1emma finishes the proof 

of our theorem. 

(15) Similarly, let A~(U) be the (n -p ) - fo rms  of M whose support is 

contained in U (i.e. ~b E A ~(U) if • E A n-p (M) and supp • C U). 

Define p:A~(U)---~Ap(~',~") as follows: if ~EA~(U), choose ~ E  
A~(U~), i E / ,  such that • = E , ~  (this can be done easily by using a smooth 

partition of unity subordinate to the open covering {U~}~ of U). 
Define then p ( ~ ) =  [(f~,)~El] E Ap(~',  ~ ' )  and, as before, it is proved by 

analogous arguments that O is well defined and induces an isomorphism 

(16) o,:  H,(a ' ,  

§4. The canonical isomorphism H,(J ~[; R)--* H~(~, ~') 

In this section we prove that de Rham homology of an oriented network ~: 
admitting an internal tubular neighbourhood is isomorphic to the singular 
homology of [~1 with real coetticients. 

Assume first that ~ = {E}~i is a finite oriented network and regard it as 
embedded in some R N such that o~ U {R N} is a network with E C R N for all 

iEI. 
Let J" be an internal tubular neighbourhood of o ~ U {R ~} and let ~ be the 

corresponding induced neighbourhood of o~. 

Define, for each p, 

~, : H~(I ~1;  R)----~ H;(~,  ~r) 

to be the linear map such that the following diagram commutes: 
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(--I~(n-V) • D 
H.(U;R)  , H:-P(U;R) 

(17) j# 

= de Rham isomorphism 

H;(U) 

I p# (isomorphism of Theorem 13) 

H~(I o%1; R)  , H;(o%, J-) 

where D is Poincar6 duality and j# is induced in homology with real coefficients 

by the inclusion j : I ,~l ---~ U. 

(18) PROPOSmON. q~ : Hp([ ,~1; R ) ~  H~(,~, ~-) is an isomorphism. 

PROOF. To prove the proposition we show that Hp( I ,~1; R ) ~  He(U; R) is 

an isomorphism for all p, by induction on the number of elements of /. We 

assume that all manifolds F~ in the family are distinct. 

If I has only one element F, the proposition is clear because F is then a strong 

deformation retraction of U. 
Assume that j ,  is an isomorphism for I with at most r - 1  elements and 

suppose that I has r elements. 
Choose r maximal in L We have a commutative diagram of chain complexes 

with exact row sequences 

where 

Then, the 5-1emma applied to the corresponding commutative diagram in 

homology shows that H,(I g*l; o~)_.> H,( U,~, U,; 0~,) is an isomorphism. 
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Consider next the commutat ive diagram 

Set X, = U,~_~,~ F~, X2 = F,, X = 1 0% I. We have to show that H . ( I  i f  I; a//)___~ 
H,(I 0%1;R) is an isomorphism, i.e. that the pair (X,,X2) is excisive (see [8]), 
which is the same as proving that the excision map (X2, Xl fqX2)C(X,X~) 
induces an isomorphism in singular homology (see theorem 4, section 6, chapter 
4 of [8]) or equivalently an isomorphism of singular cohomology, since we are 
using real coefficients. 

Recall next the following definition (cf. [3], 6.13 chapter 8). Let Y be a 
topological space and Y~, Y2 subspaces of Y. We say that Y~ f3 Y, separates Y~, 

Y2 if Y~-  Y2 and Y2-  Y~ are both open in Y1 U Y2-  YI M I"2. 
Observe that X1 and X: are separated by X~ M X2 and this implies that (X~, X2) 

is Cech excisive, i.e./-t(X, X~) ~ > H(X,~, XI f3 X2), see 6.15 chapter 8 of [3]. 
Consider then the commutat ive diagram 

H ( X ,  X,) ° , X, n x_9 

1 l 
H*(X, X,) , X, n 

The vertical arrows are isomorphisms because I 0%] is an Euclidean Neighbour- 
hood Retract,  see [3], prop. 6.12, chapter 8. Therefore the lower horizontal 
arrow is also an isomorphism. This finishes the proof of Proposition (17). 

(19) PROPOSITION. The linear map ~ :Hp(] o%1; R)--~ Hp(0%, if), defined by 
the commutative diagram (17), does not depend on the choices of the embedding of 
0% in R N and that of the internal tubular neighbourhood d- inducing the given 

internal tubular neighbourhood J- of 0%. Thus q~ is canonically associated to 

( 0%, 03. 

PROOF. We prove this proposition through 6 steps labelled (a) . . . . .  (f). 
(a) Define ndif(0%; R )  (resp. H,~if(0%; R))  as the real singular homology (resp. 

cohomology) of I °%1 obtained by using only smooth simplexes (or : Ae ~ I 0%1 is 
smooth if the image of ~r is contained in some F~ of 0% and o" : b p ---* F~ is smooth 
in the usual sense). 
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We have canonical isomorphisms H*~'(~';R) " ' H , ( I ~ I ;  R), 

H*(I ~ I ; R) -= ~ H~f(,~; R)  as can be proved by standard arguments and the 

following diagram is commutative: 

H*(I ~-I ; R) .H.,,(5*,R) 

H,( I  o~l; R)* , H,~"(~* ; e )  * 

(b) Define ff by the commutative diagram 

H , ° " '~ 'R )  -~ , H,(Io~ I" R) 

H~(~, ~-) 

(c) Define a de Rham cohomology of a network o ~ as follows (see [4]): A 

smooth p-form on ~ consists of a family of p-forms (~)ie~ such that each q~, is a 
smooth p-form on F~ such that the restriction of qb i to F~ coincides with ~, (i.e. 

q~*~i = 'I~, whenever i <]) .  
Let A p (~)  be the set of this p-form on ~. A *(~) = {~p~0 A p (~)  is clearly a 

differential graded algebra with the usual derivative and product of forms. Thus 

we have a cohomology Hd*R(~), the de Rham cohomology of ~;. 
(d) Next we prove a generalized de Rham isomorphism theorem 

Hd*a(~:) " > H~'if(~;R)given as follows: 

Define A~(~)  t , C~if(~) by 

= $ ,  if Image of cr C F. 

The map f is clearly well defined and commutes with the exterior derivative by 

Stokes theorem. Thus f induces a linear map in cohomology Hd'R(~)~ 

H~,,(,,~; R). 
To prove that f* is a linear isomorphism we induct on the number of elements 

o f / .  If I has only one element F, w" have H*a(~)=  H~R(F), H*f(~;)= H*f(F) 
and f* is de Rham isomorphism. 

Suppose that f* is an isomorphism for ! with at most r - 1 elements (r => 2) 

and I has now r elements. 
Choose F, maximal in the family ,~ and let ~ = {F~}~e~-~,j, ~z = {E}i<,. 

The following is a short exact sequence of cochain complexes: 
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O---~A*(~) r, , A * ( . ~ I ) O A * ( F , )  r~ )A*(,~.2)---~O 

where 

and 

f,((cl),),e,) = (((l),),e, i , , ,¢,)  

The nontrivial fact is the surjectivity of f2 and this is done by showing that any 

differential form on if2 can be extended to a differential form on E. 
Then the standard comparison argument using the 5-1emma and induction 

hypothesis finishes the proof. 

(e) Define a linear map H~a(~)o---g~ H~(,~,ff)* as follows: 
Define first a bilinear map 

by 

A P (.~) × A ;(.~, ~)--> R 

where (¢b,),Et = a and (¢~),~, represents ti- 
The map ( , ) is well defined and satisfies 

(da, fl) + ( -  IF<a, d/3> = 0. 

Thus it induces a bilinear mapping 

and in particular we obtain a linear map 

D p " H~R(a)--~ H~,(a~, .~)*. 

(f) The following diagram commutes, as can be checked easily: 

H~R ( ~ )  ' H ~ , ( ~ ;  R ) 

, H~"(~;R)* 

In particular D" is an isomorphism (this is a generalized Poincar6 isomorphism) 

and if* (and hence ~)  is canonically defined. 
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(20) THEOREM. If 0% is any oriented network admitting an internal tubular 
neighbourhood 3, we have a canonical linear isomorphism H.([  0%[; R) "> 

c O~ H,(5*, 3). 

PROOF. For any finite subset J of I let 0%j be the corresponding finite 
subnetwork of 0% and denote by 3j  the internal tubular neighbourhood induced 
by 3- on 0%~. 

We have canonical isomorphisms (18 and 19) 

c O72 ¢j :Hp(J 0%j 1; R) --Z--~ Hp(~j, 3D 

and if J CJ '  the following diagram is commutative: 

n.(I 0%,[; 3,) 

induced by 
inclusion p J, 

Hp(10%r[; R) ~ >H;(0%r, ffr) 
tO 1 , 

where p~,, sends the class represented by [(~i)~J] to [(q~,),~j; 0~,,-j]. 
Finally we finish the proof by observing that 

H (10%I; R ) =  lim(10%,[; R) and H~(0%;ff)= lim H~(0%j, 3~). 
J C l  J C I  

J finite J f ini te 

H , ( ~ ,  3 )  one could prove, for a (21) If we consider H,(0%, if) instead of c 
finite network 0%, the existence of an isomorphism 

3 )  ° , H (I 0%1)*. 

§5. Comparison with other constructions and applications 

If 0% is a network, then C~([ 0%[) consists of the real continuous functions 
jr : [ 0% [ ~  R such that jr~0i is smooth (with the usual meaning) and if U is any 
open set of [ 0% [, C~(U) are those functions which locally coincide with functions 
of C~([ .~ [). Thus we obtain a sheaf of functions on [ 0% [ and this clearly defines a 
differentiable space structure on [0%[ in the sense of Mostow, see [6]. 

Furthermore, if jr : 0%~ 0%' is a smooth map as defined in this paper, see §2, 
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then I f l : l o f l  -~ lo f ' l  is a smooth map of differentiable spaces. Therefore we 
obtain a covariant functor from the category of networks to the category of 

differentiable spaces. 
The associate space Iofl of a network of has the following topological 

properties, as can be proved by standard geometric arguments: 

(a) I ofl admits a CW complex structure. In particular it is paracompact. 

(b) Each point x ~ l o f l  has an open neighbourhood homeomorphic to a 
linear network (see example (f) of 4). In particular I ofl is locally smoothly 

contractible. 
Furthermore, I of I admits smooth partitions of unity subordinate to any locally 

finite open covering. Therefore we conclude that de Rham cohomology of I of [, 

as defined by Mostow, is isomorphic to the real singular cohomology of I off I, see 
theorem 5.2 of [6]. On the other hand, one can show that Mostow's de Rham 

cohomology for [ of l is canonically isomorphic to de Rham cohomology of of as 

defined in this paper; see step (c) in the proof of Proposition 19. 

Contrary to most constructions based on differential forms that appear in the 
literature, which have the goal of obtaining the real singular cohomology of 

some spaces (see for instance [2], [6], [7] and [9]), our main interest in this paper 

has been on building a "de Rham homology," rather than cohomology, to be 
applied to the following situation: 

Let G be a torus acting smoothly from the left on a smooth principal bundle 

3 ~ : P ~  M with structure group K, where M is compact and oriented. The 
"singular set" A of the action of G on M consisting of those points in M left 
fixed by some nontrivial subtorus of G (as well as the set A '  of points in M left 

fixed by some nontrivial subgroup of G)  is the space associated to a finite 

oriented network of (resp. of'), see [4]. In fact, if H is a subgroup of G, define/-t  

by 15t = {a ~ G Iax = x for all x E F,}, where F,_, denotes the fixed point set of 

the action of H on M. 

Let I' be the family of all nontrivial subgroups H of G such that H = / - t  and 

let I be the family of nontrivial subtori H of G appearing as a 1-component of 
some member of I'. 

Order I '  and I by H, < H2 ¢:~ Ht ~ H2 and we obtain almost directed sets, see 

definition (1). The families o f '=  {F,} ,c , ,  and of = {FH},c~ are finite oriented 

networks with I of l = A, I of'l = A '. In fact, property (a) of definition (1) is well 

known, property (b) is easy to check. To show that (c) holds we endow M with a 

G-invariant Riemannian metric and use the following fact (see lemma 15 of [4]): 

If F~ and F2 are totally geodesic submanifolds of a Riemannian manifold M and 

F~DF2 is also a submanifold of M, then T~(F1NF2)=Tx(FOATx(F2),  
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x E F I n  F2. Property (d) is easily verified since we may restrict ourselves to 

consider an Euclidean vector space with an orthogonat action of G. 

It is well known that the normal bundles of F ,  are orientable and therefore F ,  

is orientable, since M is. 

Finally it is clear that = A, 

(22) An Application 
Choose a G-invariant principal connection form to on ~, such that to vanishes 

on the fundamental vector fields of the action of G on P outside some closed 

neighbourhood of A in U, where U is the open neighbourhood of A appearing 

in Theorem (13). Observe that by using this connection form in the Chern-Weil 

construction, we obtain (as for the Bott's vanishing theorem, [1]) differential 

forms of degree 2p > n - dim G whose support is contained in U and such that 

these forms represent characteristic classes of ~. Therefore we obtain a 

homomorphism SP(K)I ~ H2c~(U) for 2p > n - dim G, where SP(K)I denotes 

the p-linear Ad-invariant forms on the Lie algebra K of K. 

If we compose the above homomorphism with the generalized Thorn 
isomorphism p~,'H2cP(U) ~ ~,H~_2p(,.~,ff)~H,_2p(A), see (13), we have a 
linear map 

c SP(K), ~ H,-2p(,~, 3) for all 2p > n - dim G. 

The above map gives the "residues" at A of the characteristic classes of ~ of 

degree 2p > n -  dim G, and allows to give in certain cases a differential-form 

formulation of these residues. 
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